7.4 Properties of Special Parallelograms

Essential Question what are the properties of the diagonals of rectangles, rhombuses, and squares?

Recall the three types of parallelograms shown below.

Rhombus

Rectangle

Square

EXPLORATION 1 Identifying Special Quadrilaterals

Work with a partner. Use dynamic geometry software.
a. Draw a circle with center A.
b. Draw two diameters of the circle. Label the endpoints B, C, D, and E.
c. Draw quadrilateral $B D C E$.
d. Is $B D C E$ a parallelogram? rectangle? rhombus? square? Explain your reasoning.
e. Repeat parts (a)-(d) for several other circles. Write a conjecture based on your results.

Sample

EXPLORATION 2 Identifying Special Quadrilaterals

Work with a partner. Use dynamic geometry software.
a. Construct two segments that are perpendicular bisectors of each other. Label the endpoints A, B, D, and E. Label the intersection C.
b. Draw quadrilateral $A E B D$.
c. Is $A E B D$ a parallelogram? rectangle? rhombus? square? Explain your reasoning.
d. Repeat parts (a)-(c) for several other segments. Write a conjecture based on your results.

Sample

Communicate Your Answer

3. What are the properties of the diagonals of rectangles, rhombuses, and squares?
4. Is RSTU a parallelogram? rectangle? rhombus? square? Explain your reasoning.
5. What type of quadrilateral has congruent diagonals that bisect each other?

7.4 Lesson

Core Vocabulary

rhombus, p. 392
rectangle, p. 392
square, p. 392

Previous

quadrilateral
parallelogram
diagonal

What You Will Learn

Use properties of special parallelograms.

- Use properties of diagonals of special parallelograms.
- Use coordinate geometry to identify special types of parallelograms.

Using Properties of Special Parallelograms

In this lesson, you will learn about three special types of parallelograms: rhombuses, rectangles, and squares.

G) Core Concept

Rhombuses, Rectangles, and Squares

A rhombus is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

You can use the corollaries below to prove that a quadrilateral is a rhombus, rectangle, or square, without first proving that the quadrilateral is a parallelogram.

G Corollaries

Corollary 7.2 Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.
$\underline{A B C D}$ is a rhombus if and only if
$\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$.

Proof Ex. 81, p. 400

Corollary 7.3 Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.
$A B C D$ is a rectangle if and only if $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Proof Ex. 82, p. 400

Corollary 7.4 Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.
$A B C D$ is a square if and only if
$\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ and $\angle A, \angle B, \angle C$,
 and $\angle D$ are right angles.

Proof Ex. 83, p. 400

The Venn diagram below illustrates some important relationships among parallelograms, rhombuses, rectangles, and squares. For example, you can see that a square is a rhombus because it is a parallelogram with four congruent sides. Because it has four right angles, a square is also a rectangle.

EXAMPLE 1 Using Properties of Special Quadrilaterals

For any rhombus $Q R S T$, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.
a. $\angle Q \cong \angle S$
b. $\angle Q \cong \angle R$

SOLUTION

a. By definition, a rhombus is a parallelogram with four congruent sides. By the Parallelogram Opposite Angles Theorem (Theorem 7.4), opposite angles of a parallelogram are congruent. So, $\angle Q \cong \angle S$. The statement is always true.

b. If rhombus $Q R S T$ is a square, then all four angles are congruent right angles. So, $\angle Q \cong \angle R$ when $Q R S T$ is a square. Because not all rhombuses are also squares, the statement is sometimes true.

EXAMPLE 2 Classifying Special Quadrilaterals

Classify the special quadrilateral. Explain your reasoning.

SOLUTION

The quadrilateral has four congruent sides. By the Rhombus Corollary, the quadrilateral is a rhombus. Because one of the angles is not a right angle, the rhombus cannot be a square.

Monitoring Progress

1. For any square $J K L M$, is it always or sometimes true that $\overline{J K} \perp \overline{K L}$? Explain your reasoning.
2. For any rectangle $E F G H$, is it always or sometimes true that $\overline{F G} \cong \overline{G H}$? Explain your reasoning.
3. A quadrilateral has four congruent sides and four congruent angles. Sketch the quadrilateral and classify it.

Using Properties of Diagonals

G Theorems

READING

Recall that biconditionals, such as the Rhombus Diagonals Theorem, can be rewritten as two parts. To prove a biconditional, you must prove both parts.

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.
$\square A B C D$ is a rhombus if and only if $\overline{A C} \perp \overline{B D}$.
Proof p. 394; Ex. 72, p. 399

Theorem 7.12 Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
$\square A B C D$ is a rhombus if and only if $\overline{A C}$ bisects $\angle B C D$ and $\angle B A D$, and $\overline{B D}$ bisects $\angle A B C$ and $\angle A D C$.

Proof Exs. 73 and 74, p. 399

PROOF Part of the Rhombus Diagonals Theorem

Given $A B C D$ is a rhombus.
Prove $\overline{A C} \perp \overline{B D}$
$A B C D$ is a rhombus. By the definition of a rhombus,
 $\overline{A B} \cong \overline{B C}$. Because a rhombus is a parallelogram and the diagonals of a parallelogram bisect each other, $\overline{B D}$ bisects $\overline{A C}$ at E. So, $\overline{A E} \cong \overline{E C}$. $\overline{B E} \cong \overline{B E}$ by the Reflexive Property of Congruence (Theorem 2.1). So, $\triangle A E B \cong \triangle C E B$ by the SSS Congruence Theorem (Theorem 5.8). $\angle A E B \cong \angle C E B$ because corresponding parts of congruent triangles are congruent. Then by the Linear Pair Postulate (Postulate 2.8), $\angle A E B$ and $\angle C E B$ are supplementary. Two congruent angles that form a linear pair are right angles, so $m \angle A E B=m \angle C E B=90^{\circ}$ by the definition of a right angle. So, $\overline{A C} \perp \overline{B D}$ by the definition of perpendicular lines.

EXAMPLE 3 Finding Angle Measures in a Rhombus

Find the measures of the numbered angles in rhombus $A B C D$.

SOLUTION

Use the Rhombus Diagonals Theorem and the Rhombus Opposite Angles Theorem to find the angle measures.

$$
\begin{array}{rlrl}
m \angle 1 & =90^{\circ} & & \text { The diagonals of a rhombus are perpendicular. } \\
m \angle 2 & =61^{\circ} & & \text { Alternate Interior Angles Theorem (Theorem 3.2) } \\
m \angle 3 & =61^{\circ} & & \text { Each diagonal of a rhombus bisects a pair of } \\
\text { opposite angles, and } m \angle 2=61^{\circ} . \\
m \angle 1+m \angle 3+m \angle 4 & =180^{\circ} & & \text { Triangle Sum Theorem (Theorem 5.1) } \\
90^{\circ}+61^{\circ}+m \angle 4 & =180^{\circ} & & \text { Substitute } 90^{\circ} \text { for } m \angle 1 \text { and } 61^{\circ} \text { for } m \angle 3 . \\
m \angle 4 & =29^{\circ} & & \text { Solve for } m \angle 4 .
\end{array}
$$

So, $m \angle 1=90^{\circ}, m \angle 2=61^{\circ}, m \angle 3=61^{\circ}$, and $m \angle 4=29^{\circ}$.
4. In Example 3, what is $m \angle A D C$ and $m \angle B C D$?
5. Find the measures of the numbered angles in rhombus $D E F G$.

G) Theorem

Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.
$\square A B C D$ is a rectangle if and only if $\overline{A C} \cong \overline{B D}$.
Proof Exs. 87 and 88, p. 400

EXAMPLE 4 Identifying a Rectangle

You are building a frame for a window. The window will be installed in the opening shown in the diagram.
a. The opening must be a rectangle. Given the measurements in the diagram, can you assume that it is? Explain.
b. You measure the diagonals of the opening. The diagonals are 54.8 inches and 55.3 inches. What can you conclude about the shape of the opening?

SOLUTION

a. No, you cannot. The boards on opposite sides are the same length, so they form a parallelogram. But you do not know whether the angles are right angles.
b. By the Rectangle Diagonals Theorem, the diagonals of a rectangle are congruent. The diagonals of the quadrilateral formed by the boards are not congruent, so the boards do not form a rectangle.

EXAMPLE 5 Finding Diagonal Lengths in a Rectangle

In rectangle $Q R S T, Q S=5 x-31$ and $R T=2 x+11$.
Find the lengths of the diagonals of $Q R S T$.

SOLUTION

By the Rectangle Diagonals Theorem, the diagonals of a rectangle are congruent. Find x so that $\overline{Q S} \cong \overline{R T}$.

$$
\begin{aligned}
Q S & =R T & & \text { Set the diagonal lengths equal. } \\
5 x-31 & =2 x+11 & & \text { Substitute } 5 x-31 \text { for } Q S \text { and } 2 x+11 \text { for } R T . \\
3 x-31 & =11 & & \text { Subtract } 2 x \text { from each side. } \\
3 x & =42 & & \text { Add } 31 \text { to each side. } \\
x & =14 & & \text { Divide each side by } 3 .
\end{aligned}
$$

When $x=14, Q S=5(14)-31=39$ and $R T=2(14)+11=39$.
Each diagonal has a length of 39 units.

6. Suppose you measure only the diagonals of the window opening in Example 4 and they have the same measure. Can you conclude that the opening is a rectangle? Explain.
7. WHAT IF? In Example 5, $Q S=4 x-15$ and $R T=3 x+8$. Find the lengths of the diagonals of QRST.

Using Coordinate Geometry

EXAMPLE 6 Identifying a Parallelogram in the Coordinate Plane

Decide whether $\square A B C D$ with vertices $A(-2,6), B(6,8), C(4,0)$, and $D(-4,-2)$ is a rectangle, a rhombus, or a square. Give all names that apply.

SOLUTION

1. Understand the Problem You know the vertices of $\square A B C D$. You need to identify the type of parallelogram.
2. Make a Plan Begin by graphing the vertices. From the graph, it appears that all four sides are congruent and there are no right angles.

Check the lengths and slopes of the diagonals of $\square A B C D$. If the diagonals are congruent, then $\square A B C D$ is a rectangle. If the diagonals are perpendicular, then $\square A B C D$ is a rhombus. If they are both congruent and perpendicular, then $\square A B C D$ is a rectangle, a rhombus, and a square.
3. Solve the Problem Use the Distance Formula to find $A C$ and $B D$.

$$
\begin{aligned}
& A C=\sqrt{(-2-4)^{2}+(6-0)^{2}}=\sqrt{72}=6 \sqrt{2} \\
& B D=\sqrt{[6-(-4)]^{2}+[8-(-2)]^{2}}=\sqrt{200}=10 \sqrt{2}
\end{aligned}
$$

Because $6 \sqrt{2} \neq 10 \sqrt{2}$, the diagonals are not congruent. So, $\square A B C D$ is not a rectangle. Because it is not a rectangle, it also cannot be a square.
Use the slope formula to find the slopes of the diagonals $\overline{A C}$ and $\overline{B D}$.

$$
\text { slope of } \overline{A C}=\frac{6-0}{-2-4}=\frac{6}{-6}=-1 \quad \text { slope of } \overline{B D}=\frac{8-(-2)}{6-(-4)}=\frac{10}{10}=1
$$

Because the product of the slopes of the diagonals is -1 , the diagonals are perpendicular.

So, $\square A B C D$ is a rhombus.
4. Look Back Check the side lengths of $\square A B C D$. Each side has a length of $2 \sqrt{17}$ units, so $\square A B C D$ is a rhombus. Check the slopes of two consecutive sides.

$$
\text { slope of } \overline{A B}=\frac{8-6}{6-(-2)}=\frac{2}{8}=\frac{1}{4} \quad \text { slope of } \overline{B C}=\frac{8-0}{6-4}=\frac{8}{2}=4
$$

Because the product of these slopes is not $-1, \overline{A B}$ is not perpendicular to $\overline{B C}$. So, $\angle A B C$ is not a right angle, and $\square A B C D$ cannot be a rectangle or a square.

Monitoring Progress

8. Decide whether $\square P Q R S$ with vertices $P(-5,2), Q(0,4), R(2,-1)$, and $S(-3,-3)$ is a rectangle, a rhombus, or a square. Give all names that apply.

-Vocabulary and Core Concept Check

1. VOCABULARY What is another name for an equilateral rectangle?
2. WRITING What should you look for in a parallelogram to know if the parallelogram is also a rhombus?

Monitoring Progress and Modeling with Mathematics

In Exercises 3-8, for any rhombus JKLM, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning. (See Example 1.)
3. $\angle L \cong \angle M$
4. $\angle K \cong \angle M$
5. $\overline{J M} \cong \overline{K L}$
6. $\overline{J K} \cong \overline{K L}$
7. $\overline{J L} \cong \overline{K M}$
8. $\angle J K M \cong \angle L K M$

In Exercises 9-12, classify the quadrilateral. Explain your reasoning. (See Example 2.)

In Exercises 13-16, find the measures of the numbered angles in rhombus DEFG. (See Example 3.)
13.

14.

In Exercises 17-22, for any rectangle WXYZ, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.
17. $\angle W \cong \angle X$
18. $\overline{W X} \cong \overline{Y Z}$
19. $\overline{W X} \cong \overline{X Y}$
20. $\overline{W Y} \cong \overline{X Z}$
21. $\overline{W Y} \perp \overline{X Z}$
22. $\angle W X Z \cong \angle Y X Z$

In Exercises 23 and 24, determine whether the quadrilateral is a rectangle. (See Example 4.)
23.

24.

In Exercises 25-28, find the lengths of the diagonals of rectangle WXYZ. (See Example 5.)
25. $W Y=6 x-7$
26. $W Y=14 x+10$
$X Z=3 x+2$
$X Z=11 x+22$
27. $W Y=24 x-8$
$X Z=-18 x+13$
28. $W Y=16 x+2$
$X Z=36 x-6$

In Exercises 29-34, name each quadrilateralparallelogram, rectangle, rhombus, or square-for which the statement is always true.
29. It is equiangular.
30. It is equiangular and equilateral.
31. The diagonals are perpendicular.
32. Opposite sides are congruent.
33. The diagonals bisect each other.
34. The diagonals bisect opposite angles.
35. ERROR ANALYSIS Quadrilateral $P Q R S$ is a rectangle. Describe and correct the error in finding the value of x.

$$
\begin{aligned}
& Q \\
& m \angle Q S R=m \angle Q S P \\
& x^{\circ}=58^{\circ} \\
& x=58
\end{aligned}
$$

36. ERROR ANALYSIS Quadrilateral $P Q R S$ is a rhombus. Describe and correct the error in finding the value of x.

$$
\begin{aligned}
m \angle Q R P & =m \angle S Q R \\
x^{\circ} & =37^{\circ} \\
x & =37
\end{aligned}
$$

In Exercises 37-42, the diagonals of rhombus $A B C D$ intersect at E. Given that $m \angle B A C=53^{\circ}, D E=8$, and $E C=6$, find the indicated measure.

37. $m \angle D A C$
38. $m \angle A E D$
39. $m \angle A D C$
40. $D B$
41. $A E$
42. $A C$

In Exercises 43-48, the diagonals of rectangle QRST intersect at P. Given that $m \angle P T S=34^{\circ}$ and $Q S=10$, find the indicated measure.

43. $m \angle Q T R$
44. $m \angle Q R T$
45. $m \angle S R T$
46. $Q P$
47. $R T$
48. $R P$

In Exercises 49-54, the diagonals of square LMNP intersect at K. Given that $L K=1$, find the indicated measure.

49. $m \angle M K N$
50. $m \angle L M K$
51. $m \angle L P K$
52. $K N$
53. $L N$
54. $M P$

In Exercises 55-60, decide whether $\square J K L M$ is a rectangle, a rhombus, or a square. Give all names that apply. Explain your reasoning. (See Example 6.)
55. $J(-4,2), K(0,3), L(1,-1), M(-3,-2)$
56. $J(-2,7), K(7,2), L(-2,-3), M(-11,2)$
57. $J(3,1), K(3,-3), L(-2,-3), M(-2,1)$
58. $J(-1,4), K(-3,2), L(2,-3), M(4,-1)$
59. $J(5,2), K(1,9), L(-3,2), M(1,-5)$
60. $J(5,2), K(2,5), L(-1,2), M(2,-1)$

MATHEMATICAL CONNECTIONS In Exercises 61 and 62, classify the quadrilateral. Explain your reasoning. Then find the values of x and y.
61.

62. Q

63. DRAWING CONCLUSIONS In the window, $\overline{B D} \cong \overline{D F} \cong \overline{B H} \cong \overline{H F}$. Also, $\angle H A B, \angle B C D$, $\angle D E F$, and $\angle F G H$ are right angles.

a. Classify $H B D F$ and $A C E G$. Explain your reasoning.
b. What can you conclude about the lengths of the diagonals $\overline{A E}$ and $\overline{G C}$? Given that these diagonals intersect at J, what can you conclude about the lengths of $\overline{A J}, \overline{J E}, \overline{C J}$, and $\overline{J G}$? Explain.
64. ABSTRACT REASONING Order the terms in a diagram so that each term builds off the previous term(s). Explain why each figure is in the location you chose.

CRITICAL THINKING In Exercises 65-70, complete each statement with always, sometimes, or never. Explain your reasoning.
65. A square is \qquad a rhombus.
66. A rectangle is \qquad a square.
67. A rectangle \qquad has congruent diagonals.
68. The diagonals of a square \qquad bisect
its angles.
69. A rhombus \qquad has four congruent angles.
70. A rectangle \qquad has perpendicular diagonals.
71. USING TOOLS You want to mark off a square region for a garden at school. You use a tape measure to mark off a quadrilateral on the ground. Each side of the quadrilateral is 2.5 meters long. Explain how you can use the tape measure to make sure that the quadrilateral is a square.
72. PROVING A THEOREM Use the plan for proof below to write a paragraph proof for one part of the Rhombus Diagonals Theorem (Theorem 7.11).

Given $\quad \frac{A B C D}{A C} \perp \overline{B D}$ is a parallelogram.
Prove $A B C D$ is a rhombus.
Plan for Proof Because $A B C D$ is a parallelogram, its diagonals bisect each other at X. Use $\overline{A C} \perp \overline{B D}$ to show that $\triangle B X C \cong \triangle D X C$. Then show that $\overline{B C} \cong \overline{D C}$. Use the properties of a parallelogram to show that $A B C D$ is a rhombus.

PROVING A THEOREM In Exercises 73 and 74, write a proof for part of the Rhombus Opposite Angles Theorem (Theorem 7.12).
73. Given $\underline{P Q R S}$ is a parallelogram.
$\overline{P R}$ bisects $\angle S P Q$ and $\angle Q R S$.
$\overline{S Q}$ bisects $\angle P S R$ and $\angle R Q P$.
Prove $P Q R S$ is a rhombus.

74. Given $W X Y Z$ is a rhombus.

Prove $\overline{W Y}$ bisects $\angle Z W X$ and $\angle X Y Z$.
$\overline{Z X}$ bisects $\angle W Z Y$ and $\angle Y X W$.

75. ABSTRACT REASONING Will a diagonal of a square ever divide the square into two equilateral triangles? Explain your reasoning.
76. ABSTRACT REASONING Will a diagonal of a rhombus ever divide the rhombus into two equilateral triangles? Explain your reasoning.
77. CRITICAL THINKING Which quadrilateral could be called a regular quadrilateral? Explain your reasoning.
78. HOW DO YOU SEE IT? What other information do you need to determine whether the figure is a rectangle?

79. REASONING Are all rhombuses similar? Are all squares similar? Explain your reasoning.
80. THOUGHT PROVOKING Use the Rhombus Diagonals Theorem (Theorem 7.11) to explain why every rhombus has at least two lines of symmetry.

PROVING A COROLLARY In Exercises 81-83, write the corollary as a conditional statement and its converse. Then explain why each statement is true.
81. Rhombus Corollary (Corollary 7.2)
82. Rectangle Corollary (Corollary 7.3)
83. Square Corollary (Corollary 7.4)
84. MAKING AN ARGUMENT Your friend claims a rhombus will never have congruent diagonals because it would have to be a rectangle. Is your friend correct? Explain your reasoning.
85. PROOF Write a proof in the style of your choice.

Given $\triangle X Y Z \cong \triangle X W Z, \angle X Y W \cong \angle Z W Y$
Prove $W X Y Z$ is a rhombus.

86. PROOF Write a proof in the style of your choice.

Given $\overline{B C} \cong \overline{A D}, \overline{B C} \perp \overline{D C}, \overline{A D} \perp \overline{D C}$
Prove $A B C D$ is a rectangle.

PROVING A THEOREM In Exercises 87 and 88, write a proof for part of the Rectangle Diagonals Theorem (Theorem 7.13).
87. Given $P Q R S$ is a rectangle.

Prove $\overline{P R} \cong \overline{S Q}$
88. Given $P Q R S$ is a parallelogram.

$$
\overline{P R} \cong \overline{S Q}
$$

Prove $P Q R S$ is a rectangle.
$\overline{D E}$ is a midsegment of $\triangle \boldsymbol{A B C}$. Find the values of \boldsymbol{x} and \boldsymbol{y}. (Section 6.4)
89.

90.

91.

